Skip to content

Core components

Middleware

Control and customize agent execution at every step

Middleware provides a way to more tightly control what happens inside the agent.

The core agent loop involves calling a model, letting it choose tools to execute, and then finishing when it calls no more tools:

Middleware exposes hooks before and after each of those steps:

What can middleware do?

Monitor Track agent behavior with logging, analytics, and debugging

Modify Transform prompts, tool selection, and output formatting

Control Add retries, fallbacks, and early termination logic

Enforce Apply rate limits, guardrails, and PII detection

Add middleware by passing it to create_agent:

python
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware, HumanInTheLoopMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[SummarizationMiddleware(), HumanInTheLoopMiddleware()],
)

Built-in middleware

LangChain provides prebuilt middleware for common use cases:

Summarization

Automatically summarize conversation history when approaching token limits.

TIP

Perfect for:

  • Long-running conversations that exceed context windows
  • Multi-turn dialogues with extensive history
  • Applications where preserving full conversation context matters
python
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[weather_tool, calculator_tool],
    middleware=[
        SummarizationMiddleware(
            model="gpt-4o-mini",
            max_tokens_before_summary=4000,  # Trigger summarization at 4000 tokens
            messages_to_keep=20,  # Keep last 20 messages after summary
            summary_prompt="Custom prompt for summarization...",  # Optional
        ),
    ],
)
Configuration options
nametypedesc
modelstring(required)Model for generating summaries
max_tokens_before_summarynumberToken threshold for triggering summarization
messages_to_keepnumberRecent messages to preserve
token_counterfunctionCustom token counting function. Defaults to character-based counting.
summary_promptstringCustom prompt template. Uses built-in template if not specified.
summary_prefixstringPrefix for summary messages

Human-in-the-loop

Pause agent execution for human approval, editing, or rejection of tool calls before they execute.

TIP

Perfect for:

  • High-stakes operations requiring human approval (database writes, financial transactions)
  • Compliance workflows where human oversight is mandatory
  • Long running conversations where human feedback is used to guide the agent
python
from langchain.agents import create_agent
from langchain.agents.middleware import HumanInTheLoopMiddleware
from langgraph.checkpoint.memory import InMemorySaver


agent = create_agent(
    model="gpt-4o",
    tools=[read_email_tool, send_email_tool],
    checkpointer=InMemorySaver(),
    middleware=[
        HumanInTheLoopMiddleware(
            interrupt_on={
                # Require approval, editing, or rejection for sending emails
                "send_email_tool": {
                    "allowed_decisions": ["approve", "edit", "reject"],
                },
                # Auto-approve reading emails
                "read_email_tool": False,
            }
        ),
    ],
)
Configuration options
nametypedesc
interrupt_ondict(required)Mapping of tool names to approval configs. Values can be True (interrupt with default config), False (auto-approve), or an InterruptOnConfig object.
description_prefixstringPrefix for action request descriptions

InterruptOnConfig options:

nametypedesc
allowed_decisionslist[string]List of allowed decisions: "approve", "edit", or "reject"
descriptionstring | callableStatic string or callable function for custom description

Important: Human-in-the-loop middleware requires a checkpointer to maintain state across interruptions.

See the human-in-the-loop documentation for complete examples and integration patterns.

Anthropic prompt caching

Reduce costs by caching repetitive prompt prefixes with Anthropic models.

TIP

Perfect for:

  • Applications with long, repeated system prompts
  • Agents that reuse the same context across invocations
  • Reducing API costs for high-volume deployments

INFO

Learn more about Anthropic Prompt Caching strategies and limitations.

python
from langchain_anthropic import ChatAnthropic
from langchain_anthropic.middleware import AnthropicPromptCachingMiddleware
from langchain.agents import create_agent


LONG_PROMPT = """
Please be a helpful assistant.

<Lots more context ...>
"""

agent = create_agent(
    model=ChatAnthropic(model="claude-sonnet-4-5-20250929"),
    system_prompt=LONG_PROMPT,
    middleware=[AnthropicPromptCachingMiddleware(ttl="5m")],
)

# cache store
agent.invoke({"messages": [HumanMessage("Hi, my name is Bob")]})

# cache hit, system prompt is cached
agent.invoke({"messages": [HumanMessage("What's my name?")]})
Configuration options
nametypedesc
typestringCache type. Only "ephemeral" is currently supported.
ttlstringTime to live for cached content. Valid values: "5m" or "1h"
min_messages_to_cachenumberMinimum number of messages before caching starts
unsupported_model_behaviorstringBehavior when using non-Anthropic models. Options: "ignore", "warn", or "raise"

Model call limit

Limit the number of model calls to prevent infinite loops or excessive costs.

TIP

Perfect for:

  • Preventing runaway agents from making too many API calls
  • Enforcing cost controls on production deployments
  • Testing agent behavior within specific call budgets
python
from langchain.agents import create_agent
from langchain.agents.middleware import ModelCallLimitMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        ModelCallLimitMiddleware(
            thread_limit=10,  # Max 10 calls per thread (across runs)
            run_limit=5,  # Max 5 calls per run (single invocation)
            exit_behavior="end",  # Or "error" to raise exception
        ),
    ],
)
Configuration options
nametypedesc
thread_limitnumberMaximum model calls across all runs in a thread. Defaults to no limit.
run_limitnumberMaximum model calls per single invocation. Defaults to no limit.
exit_behaviorstringBehavior when limit is reached. Options: "end" (graceful termination) or "error" (raise exception)

Tool call limit

Limit the number of tool calls to specific tools or all tools.

TIP

Perfect for:

  • Preventing excessive calls to expensive external APIs
  • Limiting web searches or database queries
  • Enforcing rate limits on specific tool usage
python
from langchain.agents import create_agent
from langchain.agents.middleware import ToolCallLimitMiddleware


# Limit all tool calls
global_limiter = ToolCallLimitMiddleware(thread_limit=20, run_limit=10)

# Limit specific tool
search_limiter = ToolCallLimitMiddleware(
    tool_name="search",
    thread_limit=5,
    run_limit=3,
)

agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[global_limiter, search_limiter],
)
Configuration options
nametypedesc
tool_namestringSpecific tool to limit. If not provided, limits apply to all tools.
run_limitnumberMaximum model calls per single invocation. Defaults to no limit.
thread_limitnumberMaximum tool calls across all runs in a thread. Defaults to no limit.
exit_behaviorstringBehavior when limit is reached. Options: "end" (graceful termination) or "error" (raise exception)

Model fallback

Automatically fallback to alternative models when the primary model fails.

TIP

Perfect for:

  • Building resilient agents that handle model outages
  • Cost optimization by falling back to cheaper models
  • Provider redundancy across OpenAI, Anthropic, etc.
python
from langchain.agents import create_agent
from langchain.agents.middleware import ModelFallbackMiddleware


agent = create_agent(
    model="gpt-4o",  # Primary model
    tools=[...],
    middleware=[
        ModelFallbackMiddleware(
            "gpt-4o-mini",  # Try first on error
            "claude-3-5-sonnet-20241022",  # Then this
        ),
    ],
)
Configuration options
nametypedesc
first_modelstring | BaseChatModelFirst fallback model to try when the primary model fails. Can be a model string (e.g., "openai:gpt-4o-mini") or a BaseChatModel instance.
additional_modelsstring | BaseChatModelAdditional fallback models to try in order if previous models fail

PII detection

Detect and handle Personally Identifiable Information in conversations.

TIP

Perfect for:

  • Healthcare and financial applications with compliance requirements
  • Customer service agents that need to sanitize logs
  • Any application handling sensitive user data
python
from langchain.agents import create_agent
from langchain.agents.middleware import PIIMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        # Redact emails in user input
        PIIMiddleware("email", strategy="redact", apply_to_input=True),
        # Mask credit cards (show last 4 digits)
        PIIMiddleware("credit_card", strategy="mask", apply_to_input=True),
        # Custom PII type with regex
        PIIMiddleware(
            "api_key",
            detector=r"sk-[a-zA-Z0-9]{32}",
            strategy="block",  # Raise error if detected
        ),
    ],
)
Configuration options
nametypedesc
pii_typestringType of PII to detect. Can be a built-in type (email, credit_card, ip, mac_address, url) or a custom type name.
strategystringHow to handle detected PII. Options:
1."block" - Raise exception when detected
2."redact" - Replace with [REDACTED_TYPE]
3."mask" - Partially mask (e.g., ****-****-****-1234)c
4."hash" - Replace with deterministic hash
detectorfunction | regexCustom detector function or regex pattern. If not provided, uses built-in detector for the PII type.
apply_to_inputbooleanCheck user messages before model call
apply_to_outputbooleanCheck AI messages after model call
apply_to_tool_resultsbooleanCheck tool result messages after execution

Planning

Add todo list management capabilities for complex multi-step tasks.

This middleware automatically provides agents with a write_todos tool and system prompts to guide effective task planning.

python
from langchain.agents import create_agent
from langchain.agents.middleware import TodoListMiddleware
from langchain.messages import HumanMessage


agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[TodoListMiddleware()],
)

result = agent.invoke({"messages": [HumanMessage("Help me refactor my codebase")]})
print(result["todos"])  # Array of todo items with status tracking
Configuration options
nametypedesc
system_promptstringCustom system prompt for guiding todo usage. Uses built-in prompt if not specified.
tool_descriptionstringCustom description for the write_todos tool. Uses built-in description if not specified.

LLM tool selector

Use an LLM to intelligently select relevant tools before calling the main model.

TIP

Perfect for:

  • Agents with many tools (10+) where most aren't relevant per query
  • Reducing token usage by filtering irrelevant tools
  • Improving model focus and accuracy
python
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolSelectorMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[tool1, tool2, tool3, tool4, tool5, ...],  # Many tools
    middleware=[
        LLMToolSelectorMiddleware(
            model="gpt-4o-mini",  # Use cheaper model for selection
            max_tools=3,  # Limit to 3 most relevant tools
            always_include=["search"],  # Always include certain tools
        ),
    ],
)
Configuration options
nametypedesc
modelstring|BaseChatModelModel for tool selection. Can be a model string or BaseChatModel instance. Defaults to the agent's main model.
system_promptstringInstructions for the selection model. Uses built-in prompt if not specified.
max_toolsnumberMaximum number of tools to select. Defaults to no limit.
always_includelist[string]List of tool names to always include in the selection

Tool retry

Automatically retry failed tool calls with configurable exponential backoff.

TIP

Perfect for:

  • Handling transient failures in external API calls
  • Improving reliability of network-dependent tools
  • Building resilient agents that gracefully handle temporary errors
python
from langchain.agents import create_agent
from langchain.agents.middleware import ToolRetryMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, database_tool],
    middleware=[
        ToolRetryMiddleware(
            max_retries=3,  # Retry up to 3 times
            backoff_factor=2.0,  # Exponential backoff multiplier
            initial_delay=1.0,  # Start with 1 second delay
            max_delay=60.0,  # Cap delays at 60 seconds
            jitter=True,  # Add random jitter to avoid thundering herd
        ),
    ],
)
Configuration options
nametypedesc
max_retriesnumberMaximum number of retry attempts after the initial call (3 total attempts with default)
toolslist[BaseTool | str]Optional list of tools or tool names to apply retry logic to. If None, applies to all tools.
retry_ontuple[type[Exception], ...] | callableEither a tuple of exception types to retry on, or a callable that takes an exception and returns True if it should be retried.
on_failurestring | callableBehavior when all retries are exhausted. Options:
1."return_message" - Return a ToolMessage with error details (allows LLM to handle failure)
2."raise" - Re-raise the exception (stops agent execution)
3.Custom callable - Function that takes the exception and returns a string for the ToolMessage content
backoff_factornumberMultiplier for exponential backoff. Each retry waits initial_delay * (backoff_factor ** retry_number) seconds. Set to 0.0 for constant delay.
initial_delaynumberInitial delay in seconds before first retry
max_delaynumberMaximum delay in seconds between retries (caps exponential backoff growth)
jitterbooleanWhether to add random jitter (±25%) to delay to avoid thundering herd

LLM tool emulator

Emulate tool execution using an LLM for testing purposes, replacing actual tool calls with AI-generated responses.

TIP

Perfect for:

  • Testing agent behavior without executing real tools
  • Developing agents when external tools are unavailable or expensive
  • Prototyping agent workflows before implementing actual tools
python
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolEmulator


agent = create_agent(
    model="gpt-4o",
    tools=[get_weather, search_database, send_email],
    middleware=[
        # Emulate all tools by default
        LLMToolEmulator(),

        # Or emulate specific tools
        # LLMToolEmulator(tools=["get_weather", "search_database"]),

        # Or use a custom model for emulation
        # LLMToolEmulator(model="claude-sonnet-4-5-20250929"),
    ],
)
Configuration options
nametypedesc
toolslist[str | BaseTool]List of tool names (str) or BaseTool instances to emulate. If None (default), ALL tools will be emulated. If empty list, no tools will be emulated.
modelsstring | BaseChatModelModel to use for generating emulated tool responses. Can be a model identifier string or BaseChatModel instance.

Context editing

Manage conversation context by trimming, summarizing, or clearing tool uses.

TIP

Perfect for:

  • Long conversations that need periodic context cleanup
  • Removing failed tool attempts from context
  • Custom context management strategies
python
from langchain.agents import create_agent
from langchain.agents.middleware import ContextEditingMiddleware, ClearToolUsesEdit


agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        ContextEditingMiddleware(
            edits=[
                ClearToolUsesEdit(trigger=1000),  # Clear old tool uses
            ],
        ),
    ],
)
Configuration options
nametypedesc
editslist[ContextEdit]List of ContextEdit strategies to apply
token_count_methodstringToken counting method. Options: "approximate" or "model"

ClearToolUsesEdit options: |trigger|number| Token count that triggers the edit| |clear_at_least|number|Minimum tokens to reclaim| |keep|number| Number of recent tool results to preserve| |clear_tool_inputs|boolean|Whether to clear tool call parameters| |exclude_tools|list[string]| List of tool names to exclude from clearing| |placeholder|string|Placeholder text for cleared outputs|

Custom middleware

Build custom middleware by implementing hooks that run at specific points in the agent execution flow.

You can create middleware in two ways:

  1. Decorator-based - Quick and simple for single-hook middleware
  2. Class-based - More powerful for complex middleware with multiple hooks

Decorator-based middleware

For simple middleware that only needs a single hook, decorators provide the quickest way to add functionality:

python
from langchain.agents.middleware import before_model, after_model, wrap_model_call
from langchain.agents.middleware import AgentState, ModelRequest, ModelResponse, dynamic_prompt
from langchain.messages import AIMessage
from langchain.agents import create_agent
from langgraph.runtime import Runtime
from typing import Any, Callable


# Node-style: logging before model calls
@before_model
def log_before_model(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
    print(f"About to call model with {len(state['messages'])} messages")
    return None

# Node-style: validation after model calls
@after_model(can_jump_to=["end"])
def validate_output(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
    last_message = state["messages"][-1]
    if "BLOCKED" in last_message.content:
        return {
            "messages": [AIMessage("I cannot respond to that request.")],
            "jump_to": "end"
        }
    return None

# Wrap-style: retry logic
@wrap_model_call
def retry_model(
    request: ModelRequest,
    handler: Callable[[ModelRequest], ModelResponse],
) -> ModelResponse:
    for attempt in range(3):
        try:
            return handler(request)
        except Exception as e:
            if attempt == 2:
                raise
            print(f"Retry {attempt + 1}/3 after error: {e}")

# Wrap-style: dynamic prompts
@dynamic_prompt
def personalized_prompt(request: ModelRequest) -> str:
    user_id = request.runtime.context.get("user_id", "guest")
    return f"You are a helpful assistant for user {user_id}. Be concise and friendly."

# Use decorators in agent
agent = create_agent(
    model="gpt-4o",
    middleware=[log_before_model, validate_output, retry_model, personalized_prompt],
    tools=[...],
)

Available decorators

Node-style (run at specific execution points):

  • @before_agent - Before agent starts (once per invocation)
  • @before_model - Before each model call
  • @after_model - After each model response
  • @after_agent - After agent completes (once per invocation)

Wrap-style (intercept and control execution):

Convenience decorators:

When to use decorators

Use decorators when • You need a single hook
• No complex configuration

Use classes when • Multiple hooks needed
• Complex configuration
• Reuse across projects (config on init)

Class-based middleware

Two hook styles

Node-style hooks

Run sequentially at specific execution points. Use for logging, validation, and state updates.

Wrap-style hooks Intercept execution with full control over handler calls. Use for retries, caching, and transformation.

Node-style hooks

Run at specific points in the execution flow:

  • before_agent - Before agent starts (once per invocation)
  • before_model - Before each model call
  • after_model - After each model response
  • after_agent - After agent completes (up to once per invocation)

Example: Logging middleware

python
from langchain.agents.middleware import AgentMiddleware, AgentState
from langgraph.runtime import Runtime
from typing import Any

class LoggingMiddleware(AgentMiddleware):
    def before_model(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
        print(f"About to call model with {len(state['messages'])} messages")
        return None

    def after_model(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
        print(f"Model returned: {state['messages'][-1].content}")
        return None

Example: Conversation length limit

python
from langchain.agents.middleware import AgentMiddleware, AgentState
from langchain.messages import AIMessage
from langgraph.runtime import Runtime
from typing import Any

class MessageLimitMiddleware(AgentMiddleware):
    def __init__(self, max_messages: int = 50):
        super().__init__()
        self.max_messages = max_messages

    def before_model(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
        if len(state["messages"]) == self.max_messages:
            return {
                "messages": [AIMessage("Conversation limit reached.")],
                "jump_to": "end"
            }
        return None

Wrap-style hooks

Intercept execution and control when the handler is called:

  • wrap_model_call - Around each model call
  • wrap_tool_call - Around each tool call

You decide if the handler is called zero times (short-circuit), once (normal flow), or multiple times (retry logic).

Example: Model retry middleware

python
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
from typing import Callable

class RetryMiddleware(AgentMiddleware):
    def __init__(self, max_retries: int = 3):
        super().__init__()
        self.max_retries = max_retries

    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        for attempt in range(self.max_retries):
            try:
                return handler(request)
            except Exception as e:
                if attempt == self.max_retries - 1:
                    raise
                print(f"Retry {attempt + 1}/{self.max_retries} after error: {e}")

Example: Dynamic model selection

python
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
from langchain.chat_models import init_chat_model
from typing import Callable

class DynamicModelMiddleware(AgentMiddleware):
    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        # Use different model based on conversation length
        if len(request.messages) > 10:
            request.model = init_chat_model("gpt-4o")
        else:
            request.model = init_chat_model("gpt-4o-mini")

        return handler(request)

Example: Tool call monitoring

python
from langchain.tools.tool_node import ToolCallRequest
from langchain.agents.middleware import AgentMiddleware
from langchain_core.messages import ToolMessage
from langgraph.types import Command
from typing import Callable

class ToolMonitoringMiddleware(AgentMiddleware):
  def wrap_tool_call(
    self,
    request: ToolCallRequest,
    handler: Callable[[ToolCallRequest], ToolMessage | Command],
  ) -> ToolMessage | Command:
    print(f"Executing tool: {request.tool_call['name']}")
    print(f"Arguments: {request.tool_call['args']}")

    try:
      result = handler(request)
      print(f"Tool completed successfully")
      return result
    except Exception as e:
      print(f"Tool failed: {e}")
      raise

Custom state schema

Middleware can extend the agent's state with custom properties. Define a custom state type and set it as the state_schema:

python
from langchain.agents.middleware import AgentState, AgentMiddleware
from typing_extensions import NotRequired
from typing import Any

class CustomState(AgentState):
    model_call_count: NotRequired[int]
    user_id: NotRequired[str]

class CallCounterMiddleware(AgentMiddleware[CustomState]):
    state_schema = CustomState

    def before_model(self, state: CustomState, runtime) -> dict[str, Any] | None:
        # Access custom state properties
        count = state.get("model_call_count", 0)

        if count > 10:
            return {"jump_to": "end"}

        return None

    def after_model(self, state: CustomState, runtime) -> dict[str, Any] | None:
        # Update custom state
        return {"model_call_count": state.get("model_call_count", 0) + 1}
python
agent = create_agent(
    model="gpt-4o",
    middleware=[CallCounterMiddleware()],
    tools=[...],
)

# Invoke with custom state
result = agent.invoke({
    "messages": [HumanMessage("Hello")],
    "model_call_count": 0,
    "user_id": "user-123",
})

Execution order

When using multiple middleware, understanding execution order is important:

python
agent = create_agent(
    model="gpt-4o",
    middleware=[middleware1, middleware2, middleware3],
    tools=[...],
)
Execution flow (click to expand)

Before hooks run in order:

  1. middleware1.before_agent()
  2. middleware2.before_agent()
  3. middleware3.before_agent()

Agent loop starts

  1. middleware1.before_model()
  2. middleware2.before_model()
  3. middleware3.before_model()

Wrap hooks nest like function calls:

  1. middleware1.wrap_model_call()middleware2.wrap_model_call()middleware3.wrap_model_call() → model

After hooks run in reverse order:

  1. middleware3.after_model()
  2. middleware2.after_model()
  3. middleware1.after_model()

Agent loop ends

  1. middleware3.after_agent()
  2. middleware2.after_agent()
  3. middleware1.after_agent()

Key rules:

  • before_* hooks: First to last
  • after_* hooks: Last to first (reverse)
  • wrap_* hooks: Nested (first middleware wraps all others)

Agent jumps

To exit early from middleware, return a dictionary with jump_to:

python
class EarlyExitMiddleware(AgentMiddleware):
    def before_model(self, state: AgentState, runtime) -> dict[str, Any] | None:
        # Check some condition
        if should_exit(state):
            return {
                "messages": [AIMessage("Exiting early due to condition.")],
                "jump_to": "end"
            }
        return None

Available jump targets:

  • "end": Jump to the end of the agent execution
  • "tools": Jump to the tools node
  • "model": Jump to the model node (or the first before_model hook)

Important: When jumping from before_model or after_model, jumping to "model" will cause all before_model middleware to run again.

To enable jumping, decorate your hook with @hook_config(can_jump_to=[...]):

python
from langchain.agents.middleware import AgentMiddleware, hook_config
from typing import Any

class ConditionalMiddleware(AgentMiddleware):
    @hook_config(can_jump_to=["end", "tools"])
    def after_model(self, state: AgentState, runtime) -> dict[str, Any] | None:
        if some_condition(state):
            return {"jump_to": "end"}
        return None

Best practices

  1. Keep middleware focused - each should do one thing well
  2. Handle errors gracefully - don't let middleware errors crash the agent
  3. Use appropriate hook types:
    • Node-style for sequential logic (logging, validation)
    • Wrap-style for control flow (retry, fallback, caching)
  4. Clearly document any custom state properties
  5. Unit test middleware independently before integrating
  6. Consider execution order - place critical middleware first in the list
  7. Use built-in middleware when possible, don't reinvent the wheel 😃

Examples

Dynamically selecting tools

Select relevant tools at runtime to improve performance and accuracy.

TIP

Benefits:

  • Shorter prompts - Reduce complexity by exposing only relevant tools
  • Better accuracy - Models choose correctly from fewer options
  • Permission control - Dynamically filter tools based on user access
python
from langchain.agents import create_agent
from langchain.agents.middleware import AgentMiddleware, ModelRequest
from typing import Callable


class ToolSelectorMiddleware(AgentMiddleware):
    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        """Middleware to select relevant tools based on state/context."""
        # Select a small, relevant subset of tools based on state/context
        relevant_tools = select_relevant_tools(request.state, request.runtime)
        request.tools = relevant_tools
        return handler(request)

agent = create_agent(
    model="gpt-4o",
    tools=all_tools,  # All available tools need to be registered upfront
    # Middleware can be used to select a smaller subset that's relevant for the given run.
    middleware=[ToolSelectorMiddleware()],
)
Extended example: GitHub vs GitLab tool selection
python
from dataclasses import dataclass
from typing import Literal, Callable

from langchain.agents import create_agent
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
from langchain_core.tools import tool


@tool
def github_create_issue(repo: str, title: str) -> dict:
    """Create an issue in a GitHub repository."""
    return {"url": f"https://github.com/{repo}/issues/1", "title": title}

@tool
def gitlab_create_issue(project: str, title: str) -> dict:
    """Create an issue in a GitLab project."""
    return {"url": f"https://gitlab.com/{project}/-/issues/1", "title": title}

all_tools = [github_create_issue, gitlab_create_issue]

@dataclass
class Context:
    provider: Literal["github", "gitlab"]

class ToolSelectorMiddleware(AgentMiddleware):
    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        """Select tools based on the VCS provider."""
        provider = request.runtime.context.provider

        if provider == "gitlab":
            selected_tools = [t for t in request.tools if t.name == "gitlab_create_issue"]
        else:
            selected_tools = [t for t in request.tools if t.name == "github_create_issue"]

        request.tools = selected_tools
        return handler(request)

agent = create_agent(
    model="gpt-4o",
    tools=all_tools,
    middleware=[ToolSelectorMiddleware()],
    context_schema=Context,
)

# Invoke with GitHub context
agent.invoke(
    {
        "messages": [{"role": "user", "content": "Open an issue titled 'Bug: where are the cats' in the repository `its-a-cats-game`"}]
    },
    context=Context(provider="github"),
)

Key points:

  • Register all tools upfront
  • Middleware selects the relevant subset per request
  • Use context_schema for configuration requirements

Additional resources